
From the continuous to the lattice Boltzmann equation: The discretization problem
and thermal models

Paulo C. Philippi,* Luiz A. Hegele, Jr.,† Luís O. E. dos Santos,‡ and Rodrigo Surmas§

LMPT Mechanical Engineering Department, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
�Received 31 August 2005; published 9 May 2006�

The velocity discretization is a critical step in deriving the lattice Boltzmann �LBE� from the continuous
Boltzmann equation. This problem is considered in the present paper, following an alternative approach and
giving the minimal discrete velocity sets in accordance with the order of approximation that is required for the
LBE with respect to the continuous Boltzmann equation and with the lattice structure. Considering N to be the
order of the polynomial approximation to the Maxwell-Boltzmann equilibrium distribution, it is shown that
solving the discretization problem is equivalent to finding the inner product in the discrete space induced by the
inner product in the continuous space that preserves the norm and the orthogonality of the Hermite polynomial
tensors in the Hilbert space generated by the functions that map the velocity space onto the real numbers space.
As a consequence, it is shown that, for each order N of approximation, the even-parity velocity tensors are
isotropic up to rank 2N in the discrete space. The norm and the orthogonality restrictions lead to space-filling
lattices with increased dimensionality when compared with presently known lattices. This problem is discussed
in relation with a discretization approach based on a finite set of orthogonal functions in the discrete space.
Two-dimensional square lattices intended to be used in thermal problems and their respective equilibrium
distributions are presented and discussed.
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I. INTRODUCTION

In accordance with Lallemand and Luo �1�, the presently
known lattice Boltzmann equation �LBE� has not been able
to handle realistic thermal �and fully compressible flow�
problems with satisfaction. Simulation of the thermal lattice
Boltzmann equation is hampered by numerical instabilities
when the local velocity increases.

The first thermal lattice Boltzmann models were intro-
duced in about 1990 and there are several reasons that may
be conjectured for their failure in handling nonisothermal
flows �1�.

Considering the kinetic nature of the LBE, establishing a
formal link connecting the LBE to the continuous Boltzmann
equation, and enabling the conceptual analysis of this dis-
crete numerical scheme could perhaps shed some light on
this question.

Indeed, there are several features that cause the lattice
Boltzmann regular-lattice based framework to be far re-
moved from the continuous Boltzmann equation, which
would be desirable to be its conceptual support. These fea-
tures include the particles, collision, and long-range interac-
tion models, and the approach used for the time and the
velocity space discretization.

Historically, the LBE was introduced by McNamara and
Zanetti �2�, replacing the Boolean variables in the discrete
collision-propagation equations by their ensemble averages.
Higuera and Jimenez �3� proposed a linearization of the col-

lision term derived from the Boolean models, recognizing
that this full form was unnecessarily complex when the main
purpose was to retrieve the hydrodynamic equations. Follow-
ing this line of reasoning, Chen et al. �4� suggested replacing
the collision term by a single relaxation-time term, followed
by Qian et al. �5� and Chen et al. �6�, who introduced a
model based on the celebrated kinetic-theory idea of Bhatna-
gar, Gross, and Krook �BGK� �7�, but adding rest particles
and retrieving the correct incompressible Navier-Stokes
equations, with third-order nonphysical terms in the local
speed, u.

The BGK collision term describes the relaxation of the
distribution function to an equilibrium distribution. This dis-
crete equilibrium distribution was settled by writing it as a
second-order polynomial expansion in the particle velocity
ci, with parameters adjusted to retrieve the mass density, the
local velocity, and the momentum flux equilibrium moments,
which are necessary conditions for satisfying the Navier-
Stokes equations.

Thermal lattice BGK schemes included higher-order
terms in the equilibrium distribution function �8,9�, requiring
one to increase the lattice dimensionality �8–10�, i.e., the
number of vectors in the finite and discrete velocity set
�ci , i=0, . . . ,b�.

In thermal problems, the BGK single relaxation-time col-
lision term restricts the models to a fixed Prandtl number.
The correct description of fluids and fluid flow requires mul-
tiple relaxation-time models �MRT�. A two-parameter model
was introduced by He et al. �11� using two sets of distribu-
tions for the particle number density and the thermodynamic
internal energy, coupled through a viscous dissipation term.
Full MRT models were first introduced in the LBE frame-
work by d’Humières �12,13� by modifying the collision step,
considering it to be given by the relaxation to the equilibrium
of a set of nonpreserved kinetic moments.
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Most lattice Boltzmann simulations are based on an ex-
plicit numerical scheme, although some lattice BGK models
have been simulated with implicit numerical schemes
�14,15� or LBE modified explicit numerical schemes �11�,
increasing by 1 the order of the time step errors.

With a few exceptions, in all the above works there is no
formal link connecting LBE to the continuous Boltzmann
equation, although the main ideas were based on the kinetic
theory fundamentals.

He and Luo �16� have directly derived the LBE from the
continuous Boltzmann equation for some widely known lat-
tices �D2Q9, D2Q6, D2Q7, D3Q27� by the discretization of
the velocity space, using the Gauss-Hermite and Gauss-
Radau quadrature. Unfortunately, excluding the above-
mentioned lattices, the discrete velocity sets obtained by
this kind of quadrature do not generate regular, space-filling,
lattices.

Succi �17�, referring to He and Luo’s work, suggests that
establishing the exact nature of the link between the LBE
and the continuum kinetic theory could be useful for system-
atic analysis and for the potential derivation of novel LBE
numerical schemes.

The present paper deals with the aspects involved in de-
riving space-filling lattices that should be suitable for ther-
mohydrodynamic problems. We start from the continuous
Boltzmann equation, and the derivation of discrete velocity
sets is considered as a quadrature problem, i.e., �a� to find a
set of discrete velocities, ci, and weights Wi such that all the
desired macroscopic moments are exactly retrieved as mo-
ments of the discrete equilibrium distribution f i

eq, and �b� to
ensure isotropy for the even-parity rank velocity tensors and,
consequently, for the fluid transfer properties.

In doing that, two questions must be solved.
The first question is how to avoid the temperature depen-

dence of the particles discrete velocities. This is a common
drawback when performing Gauss-Hermite and related
quadratures, using the dimensionless particle velocity C
=c /�2k /Tm as the integration variable, and leads to
temperature-dependent particle velocities �18�. This problem
is solved here by letting the particle velocity, c2, be free from
the temperature T in the exponential part e−c2

of the
Maxwell-Boltzmann �MB� distribution, and leads to writing
the equilibrium distribution as a Taylor expansion in terms of
the temperature deviation �. A similar approach is presented
in �19�.

The second question is how to derive space-filling
lattices from the quadrature of the continuous Boltzmann
equation.

Shan and He �20� showed that by discretizing the
Boltzmann-BGK equation at a set of velocity vectors that
correspond to the nodes of a Gauss-Hermite quadrature
in the velocity space, the Boltzmann equation is effectively
projected on a subspace spanned by the leading Hermite
polynomials. Nevertheless, the quadrature problem leading
to a minimum number of nodes for a given degree of accu-
racy was considered by these authors as a still unsolved
problem. In addition, these authors mention the use of alter-
native numerical schemes such as the finite differences
method, considering that these nodes do not, in general,
coincide with the vertices of a regular lattice. More recently,

Pavlo et al. �18� proposed a temperature-dependent velocity
model based on an octagonal lattice, which is not space-
filling, but ensures the isotropy of sixth-rank velocity
tensors.

Given that the velocity discretization is a critical step in
deriving lattice Boltzmann equations, this problem is consid-
ered in the present paper, following an alternative approach
and giving the minimal discrete velocity sets in accordance
with the order of approximation that is required for the LBE
with respect to the continuous Boltzmann equation and with
the lattice structure.

Considering N to be the order of the polynomial approxi-
mation to the MB equilibrium distribution, it is shown that
solving the quadrature problem is equivalent to finding the
inner product �f *g�d in the discrete space induced by the
inner product �f *g�c in the continuous space, which pre-
serves the norm and the orthogonality of the Hermite poly-
nomial tensors ��,�r��. As a consequence, it is also shown
that for each �=1, . . . ,N, the 2�-rank velocity tensors are
isotropic in the discrete space.

Two-dimensional square lattices intended to be used in
thermal problems and their respective discrete equilibrium
distributions are presented and discussed.

Finally, a discretization approach based on a set of or-
thogonal functions in the discrete space is discussed in detail,
in relation with the presently proposed velocity discretization
method.

II. THE DISCRETIZATION PROBLEM IN THE LATTICE
BOLTZMANN FRAMEWORK

The classical lattice Boltzmann method is based on �i� a
regular lattice generated by a space-filling discrete velocity
set �ci , i=0. . . ,b� and �ii� a discrete form of the Boltzmann
equation, with a single or multiple relaxation time collision
model and an equilibrium solution.

A Chapman-Enskog analysis of the lattice BGK equation
�10� shows that a set of necessary conditions for the correct
thermohydrodynamic equations to be retrieved is given by
assuring that the discrete distributions f i

eq satisfy

��p	eq =
1

nd

 feq�c��p�c�dc =

1

n
�

i

f i
eq�p�ci� �1�

for ��p=1,c� ,c�c� ,c�c�c	 ,c2c�c��, where feq�c� is the MB
distribution written in terms of the particle velocity c in the
continuous space, nd is the number density of particles, n is
the number of particles per site, and ��p	eq denotes a macro-
scopic equilibrium moment of �p.

Frequently, in athermal and thermal lattice Boltzmann
models �e.g., �9��, the unknown discrete equilibrium distribu-
tions f i,N

eq for a given order of approximation, N, are derived
as finite expansions in the particle velocity ci,

f i,N
eq

n
= A + B�ci� + D��ci�ci� + ¯ + O�N� , �2�

with free parameters that are determined considering
the symmetries of a previously chosen lattice
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�= �ci , i=0, . . . ,b� and adjusted to satisfy Eq. �1� for all
��p	eq of interest.

This approach is equivalent to replacing the full MB
distribution on the left-hand side of Eq. �1� by a finite
expansion in c. In this manner, the moments, A ,B� ,D�� , . . .
in Eq. �2� are calculated to fit the MB distribution at each
order of approximation and, as a consequence, are dependent
on N.

Since we cannot expect to find any relationship between
feq�ci� and f i,N

eq , consider now the question of finding the
relationship between fN

eq�c� and f i,N
eq when c→ci. Distribution

fN
eq�c� is the projection of the full MB distribution on

the function space spanned by functions �1,c� ,c�c� , . . . �.
Given that distributions f i,N

eq are only required to retrieve
the equilibrium moments, there are no means to assure
that fN

eq�c� approaches f i,N
eq �in fact, a weighted f i,N

eq � when
c→ci.

The result is that, although the equilibrium moments are
preserved with these finite expansions, the equilibrium dis-
tribution f i,N

eq has no local identification with the projection
fN

eq�c� of the full MB distribution on the function space
spanned by �1,c� ,c�c� , . . . �. Section IV gives a more de-
tailed discussion about this problem.

In the present work, discretization is considered as a
quadrature problem. In this manner, f i

eq is replaced by a
weighted feq, preventing the above drawback.

Let H be the Hilbert weighted L2 space generated by
functions f :cD→R that map the D-dimensional continuous
velocity space, cD, onto the real variables space, R �Fig. 1�.
Velocity discretization means replacing the entire velocity
space cD by some few velocity vectors. When discretization
is considered as a quadrature problem, the discrete distribu-
tions f i

eq/n on the right-hand side of Eq. �1� must be replaced
by feq�ci� /nd, i.e., by the value of the MB distribution evalu-
ated at the pole ci multiplied by a parameter 
i, which de-
notes the weight to be attributed to each velocity vector ci to
satisfy the quadrature condition, considering that, for each
coordinate axis �, the lattice speeds ci� form a discrete and
finite set and the continuous velocity space is continuous and
extends to infinity.

In this manner, the discretization restrictions, Eq. �1�, are
replaced by the following quadrature equations:

��p	eq =
 feq�c�
nd

�p�c�dc = �
i


i�2kT

m
D/2 feq�ci�

nd
�p�ci� ,

�3�

where the factor �2kT /m�D/2 was introduced to assure 
i is a
dimensionless, real number, since feq�c� /nd is the number of
particles per unit volume of the velocity space.

The role of the integration variable

Considering T to be the local temperature, c the particle
velocity, u the macroscopic local velocity, m the mass of
each particle, and C f = �c−u� /�2kT /m the dimensionless pe-
culiar velocity, the Maxwell-Boltzmann equilibrium distribu-
tion can be written as

feq = nd� m

2�kT
D/2

e−Cf
2
. �4�

Returning to Eq. �3�, when performing the quadrature,
an integration variable must be chosen. If the dimensionless
peculiar velocity, C f, is chosen as the integration variable,

��p	eq =
1

�D/2 
 e−Cf
2
�p�C f�dC f = �

i=0

b

Wi�p�C fi� , �5�

where C fi is a discrete peculiar velocity �a constant vector�
dependent, basically, on b and on the kind of quadrature that
was performed and

Wi = Wi��C fi�� =

ie

−Cfi
2

�D/2 �6�

are the dimensionless weights to be attributed to each dis-
crete velocity C fi.

For the first kinetic moment, n,

�1	 =
1

�D/2 
 e−Cf
2
1dC f = �

i=0

b

Wi1 = �
i=0

b

Wi, �7�

resulting in

f i
eq = Win . �8�

This means that the discrete equilibrium distribution does not
depend, explicitly, on the macroscopic velocity u and on the
temperature T. Nevertheless, the temperature and local ve-
locity dependences are included in the particle velocities
through

ci = u + �2kT

m
1/2

C fi = ci�T,u� . �9�

In this manner, the physical grid, �x ,ci�, i.e., the physical
grid points where the particles will be located after each time
step, will be time-dependent. Simulation tends to be very
cumbersome and, at first glance, boundary conditions will be
difficult to satisfy.

FIG. 1. The Hilbert space and the discretization problem.
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Another choice is the dimensionless particle velocity
C=c / �2kT /m�1/2. This is the usual choice in LBM and re-
quires us to rewrite the equilibrium distribution as

feq = nd� m

2�kT
D/2

e−C2
e2U·C−U2

, �10�

where U=u / �2kT /m�1/2 is a dimensionless local velocity
and C=c / �2kT /m�1/2. The use of C as the integration

variable instead of C f requires us to develop e2U·C−C2
as an

infinite series of Hermite polynomial tensors ��,�r�� �21�,
resulting in

feq = nd
e−C2

�D/2� m

2kT
D/2

�
�

a�,�r��
eq �U���,�r���C� , �11�

where �r�� is a sequence of indexes r1 ,r2 , . . . ,r� �repeated
indexes mean summation�,

�0 = 1, �12�

�1,� = 2C�, �13�

�2,�� = 2�C�C� −
1

2
��� , �14�

�3,��	 =
4

3
�C�C�C	 −

1

2
�C���	 + C���	 + C	����� ,

�15�

�4,��	� =
2

3
�C�C�C	C� −

1

2
�C�C��	� + C�C	��� + C�C���	

+ C�C	��� + C�C���	 + C	C����� +
1

4
��	�� ,

�16�

and so on. Tensor  is defined as ��	�=����	�+��	���

+�����	. The above tensors are orthogonal in the Hilbert
space H, with respect to the inner product

�h � g�c =
1

�D/2 
 e−C2
hgdC , �17�

and symmetric with respect to any index permutation.
The coefficients a�,�r��

eq in Eq. �11� are the macroscopic
moments a0

eq=1, a1,�
eq =U�, a2,��

eq =U�U�, a3,��	
eq =U�U�U	,

a4,��	�
eq =U�U�U	U�, and so on.

Second-order approximations to the MB distribution are
widely used in LBM athermal simulation, but, as seen in the
beginning of the present section, thermohydrodynamics re-
quire fourth-order approximations for the equilibrium distri-
bution. Consider a given Nth-order approximation to the MB
distribution,

fN
eq = nd

e−C2

�D/2� m

2kT
D/2

�
�=0

N

a�,�r��
eq �U���,�r���C� , �18�

which can be viewed as an Nth-order Taylor expansion of the
full MB distribution, in fact feqeC2

�up to some local factors�,

on the local velocity U� , with errors O�UN+1�.
After quadrature, the equilibrium distribution becomes

f i,N
eq = Win�

�=0

N

a�,�r��
eq �U���,�r���Ci� , �19�

where, as above, the constant velocity vectors Ci are
dependent on b and on the kind of quadrature that was per-
formed.

The resulting ci remains temperature-dependent, through

ci = �2kT

m
1/2

Ci = ci�T� , �20�

which means that after each time step, particles will be
propagated to intermediate positions between next-
neighboring sites, requiring us to write allocation rules that
preserve, locally, the mass, momentum, and energy of the
particles packet �18�.

III. QUADRATURE BASED ON PRESCRIBED ABSCISSAS

Avoiding the ci temperature dependence requires us to
consider the particle velocity c as the integrating variable
when performing the quadrature, i.e., to let c2 be free from T
in the exponential part e−C2

of the equilibrium distribution.
This can be accomplished by writing

e−�c − u�2/�2kT/m� = �e−Cfo
2

�T0/T, �21�

where T0 is a reference �and constant� temperature and
C fo= �c−u� / �2kT0 /m�1/2 is a new dimensionless peculiar ve-
locity referred to the temperature To.

When T is near T0, i.e., when the departures from thermal
equilibrium are small, the above expression may be devel-
oped in a Taylor series around T /To=1. Considering
�=T /To−1 to be the temperature deviation, this
development gives

�e−Cfo
2

�T0/T = e−Cfo
2 �1 + Cfo

2 � +
1

2
Cfo

2 �Cfo
2 − 2��2 + ¯ � ,

�22�

which terms are increasing powers of Cfo
2 .

In this way,

feq = nd�T0

T
D/2�1 + Cfo

2 � +
1

2
Cfo

2 �Cfo
2 − 2��2 + ¯ �

�
1

�D/2� m

2kT0
D/2

�e−Co
2�

�

a�,�r��
eq �U0���,�r���C0,i� , �23�

where U0=u / �2kT0 /m�1/2.
When the term �T0 /T�D/2 is also developed in a Taylor

series in terms of the temperature deviation �, replacing
C fo=Co−U0, Eq. �23� can be written, after mutiplying
the several terms and reorganizing the resulting expression
in terms of increasing order of the Hermite polynomials
��,�r��, as
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feq =
1

�D/2� m

2kT0
D/2

e−C0
2�

�

a�,�r��
eq �nd,U0,����,�r���Co� ,

�24�

where

a0
eq = nd, �25�

a1,�
eq = ndU0,�, �26�

a2,��
eq = ndU0,�U0,� +

1

2
nd����, �27�

a3,��	
eq = ndU0,�U0,�U0,	 +

3

2
nd�U0,	���, �28�

a4,��	�
eq = ndU0,�U0,�U0,	U0,� + 3nd�U0,�U0,��	�

+
3

4
nd�2����	�, �29�

related, respectively, to following macroscopic properties at
equilibrium: the number density of particles nd, the local
momentum ndU0,�, the momentum flux ���

eq , the energy flux
e��	

eq , and a hyperflux of momentum, ���	�
eq .

Since each �p�c� is a p-order monomial tensor in c, func-
tions ��,�r�� can be written as

��,�r�� = �
�=0

�

a�,�s��
� ��. �30�

In this manner, for a given order �, after multiplying Eq.
�3� by the constants a�,�s��

� , �=0, . . . ,� and adding the result-
ing equations, the quadrature equation, Eq. �3�, can be re-
written in terms of quadrature equations for each ��,�r�� in
the orthogonal basis of H,


 feq�c�
nd

��,�r��dc = �
i


i�2kT0

m
D/2 feq�ci�

nd
��,�r���ci� .

�31�

Using the development, Eq. �24�,

�
�

a�,�s��
eq 1

�D/2 
 e−C0
2
��,�s���Co���,�r���Co�dCo

= �
�

a�,�s��
eq �

i

Wi��,�r���Co,i���,�s���Co,i� , �32�

where

Wi = Wi��C0i�� =
1

�D/2
ie
−C0i

2
. �33�

Since each a�,�s��
eq is an independent equilibrium moment,

Eq. �32� gives

�
i

Wi��,�r���Co,i���,�s���Co,i�

=
1

�D/2 
 e−C0
2
��,�s���Co���,�r���Co�dCo. �34�

Consider the inner products in the continuous and discrete
space, respectively;

�f � g�c �
1

�D/2 
 e−C0
2
fgdC0, �35�

�f � g�d � �
i

Wif�Co,i�g�Co,i� , �36�

and their induced norms

�f�c
2 �

1

�D/2 
 e−C0
2
f2dC0, �37�

�f�d
2 � �

i

Wif
2�Co,i� . �38�

Since functions ��,�r���Co� are orthogonal in the continu-
ous space with respect to the inner product Eq. �35�, Eq. �34�
requires the orthogonality of ��,�r���Co,i� in the discrete
space, with respect to the inner product Eq. �36�. In addition,
Eq. �34� requires the norm preservation of ��,�r��,

�
i

Wi��,�r��
2 �Co,i� =

1

�D/2 
 e−C0
2
��,�r��

2 �Co�dCo. �39�

In this manner, the still unknown weights Wi and the dis-
crete velocities Co,i must be chosen in such a manner that the
orthogonality of the Hermite polynomial tensors ��,�r�� is
assured in the discrete space and satisfying the norm preser-
vation equation, Eq. �39�.

In Appendix A, it is shown that the norm-preservation
equation warrants the orthogonality of ��,�r���Co,i� with re-
spect to the inner product, Eq. �36�, when the discrete veloc-
ity space is a Bravais lattice.

The above conclusion is very important because it shows
that the norm-preservation equation warrants the orthogonal-
ity of ��,�r���Co,i� in the discrete space, with respect to the
inner product, Eq. �36�. This reduces our discretization prob-
lem to find the weights Wi and the poles Coi satisfying,
solely, the norm restrictions, Eq. �39�.

Let HN be the subspace of H generated by the first Her-
mite polynomials with order s�N and fN

eq�c� be the projec-
tion of the MB distribution, feq�c�, on this subspace. Func-

tion fN
eqeC0

2
is an Nth -order c-polynomial tensor and fN

eq can
be written as

fN
eq =

e−C0
2

�D/2 �
�=0

N

a�,�r��
eq,N �nd,U0,����,�r��. �40�

Due to the orthogonality and completeness of ��,�r��,

a�,�r��
eq,N �nd,U0,�� = a�,�r��

eq �nd,U0,�� �41�

for ��N, meaning that the moments a�,�r��
eq of the full MB
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distribution are preserved when calculated in HN with the
approximation fN

eq. Although this is a trivial consequence of
the functional structure of the Hilbert space H, the above
equation is of great importance in lattice Boltzmann theory
and means that an Nth-order approximation to the equilib-
rium distribution is required when Nth-order macroscopic
equilibrium moments are to be correctly described in LBM.
In addition, since LBM is a kinetic method based on a spe-
cial discrete form of the Boltzmann equation, the degree of
accuracy of the solution will be limited by N.

The above considerations also mean that if real positive
weights Wi and velocities Coi can be found satisfying the
norm-preservation conditions, the 2�-rank velocity tensors

��r��,�s�� = �
i

WiC0,i,r0
¯ C0,i,r�

C0,i,s0
¯ C0,i,s�

�42�

are isotropic for all �=1, . . . ,N. This property follows di-
rectly from the isotropy of these velocity tensors in the con-
tinuous space. Indeed, each function C0,i,r0

¯C0,i,r�
can be

written in terms of a linear combination of the orthogonal
functions ��,�t�� and the individual products ��,�t����,�v��
give nonzero values only when t=v, when the above equa-
tion gives ���,�t���d

2, which is the same as the one calculated
in continuous space.

With the exception of a very few lattices, Gaussian-like
quadratures do not give a Bravais discrete set Coi. Neverthe-
less, if any regular set �ei�, giving a Bravais lattice, is chosen,
the quadrature problem can be considered as to find the
weights Wi and a scaling factor a such that Co,i=aei, satis-
fying Eq. �39�. Considering that the poles ei are previously
known, this quadrature method was denoted as quadrature
with prescribed abcissas.

In this manner, when the order of approximation N of
the Hermite polynomial expansion to the MB equilibrium
distribution is chosen, a set ��,�r��, �=0, . . . ,N, is estab-
lished, and the infinite and enumerable basis of the Hilbert
space H :cD→R, which generates the solutions of the con-
tinuous Boltzmann equation, is replaced by a finite set of
Hermite polynomial tensors, restricting the solutions to
Nth-degree polynomials in the velocity c. The quadrature
problem is now to select a regular lattice �ei� in such a man-
ner that functions ��,�r�� preserve the orthogonality with re-
spect to the inner product in the discrete space, and this can
be accomplished by assuring that the norm of each one of
these functions ��,�r�� is retrieved, exactly, in the discrete
space. The number b of the required lattice vectors is depen-
dent on the order N of the polynomial approximation,
b=b�N�. In addition, we have shown that when the quadra-
ture problem is solved, the 2�-rank tensors given by Eq. �42�
are isotropic in the discrete space for �=1, . . . ,N.

IV. TWO-DIMENSIONAL SQUARE LATTICES

We restrict our attention to two-dimensional square lat-
tices, although the above presented quadrature procedure is
general and may be used for deriving other two- or three-
dimensional lattices.

When the equilibrium distribution is an Nth-order polyno-
mial approximation to the MB distribution, quadrature will

be exact for all moments of order p�N, if the weights WiW
are chosen so as to satisfy Eq. �39� for all the functions,

� = �1,2Cox,2Coy,2�Cox
2 −

1

2
,2�Coy

2 −
1

2
,2CoxCoy, . . . � .

�43�

Each one of these functions gives a quadrature equation.
Some equations will be linearly dependent in accordance
with the lattice symmetry.

In two dimensions, square lattices such as the D2Q9,
D2Q13, and other DQ-like lattices have four discrete veloci-
ties at each energy level Co. Figure 2 summarizes some
square lattices that are being used in lattice Boltzmann simu-
lation: each set of four discrete velocities is superposed to the
previous lattice vectors set when adding a single energy
level, following the sequence �0,1 ,�2,2 ,2�2,3 ,3�2, . . . �.

When N=2, there will be four linearly independent equa-
tions for four unknowns related to the scaling factor a, and
the D2Q9 weights W0 ,W1 ,W2. This set has a unique solution
leading to the widely known values W0=16/36, W1=4/36,
W2=1/36, and a=�3/2. This is shown in Appendix B.

In this manner, a second-order approximation to the full
MB distribution is the equilibrium distribution in the D2Q9
lattice, and this distribution may be written as a linear com-
bination of the first six Hermite orthogonal polynomials �0,
�1,x, �1,y, �2,xx, �2,yy, and �2,xy. The addition of further
restrictions, related to the norm preservation of the third-
order Hermite polynomials �3,xxy, �3,yyx, gives a system of
equations with the same solution, but additional restrictions
related to �3,xxx or �3,yyy gives a system without solution.
Further, a ninth polynomial tensor that fits to the D2Q9 lat-
tice can be found by considering a Gram-Schmidt orthogo-
nalization of the function Co

4, using the previous Hermite
polynomials and the inner product Eq. �35�. Nevertheless,
the addition of these third- and fourth-order functions to the
second-order polynomial expansion of the discrete equilib-
rium distribution f i

eq does not appear to be helpful, since it
does not change the order of approximation of f i

eq and will
not be considered in this paper.

The dimensionless local velocity U0=u / �2kT0 /m�1/2 can
be scaled to enable us to work with unitary lattice units. In
this manner, the spatial and the time scales, h and �, respec-
tively, can be chosen so as to satisfy

h

�
= �2kT0

m
1/2

, �44�

and, since

FIG. 2. Two-dimensional square lattices.
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U0 = �
i

f iCoi = a�
i

f iei, �45�

where ei are the usual lattice vectors in 2D lattices, a new
local velocity can be defined as

u* =
U0

a
= �

i

f iei. �46�

The equilibrium distribution for the D2Q9 lattice is then

f i,2
eq = Win�1 + 2a2u�

*ei,� + 2a2u�
*u�

*�a2ei,�ei,� −
1

2
���

+ ��a2ei
2 − 1� , �47�

with third-order errors O��u* ,u*3�.
The effect of temperature on the equilibrium distribution

can be clearly seen from Eq. �47�. In higher temperature
sites, the amount of rest particles is reduced and redistributed
to higher energy levels, trying to mimic the temperature de-
pendence of the continuous MB distribution. This effect is
highly desirable in thermal LBE simulation. An equilibrium
distribution similar to Eq. �47� is given as Eq. �18� of Shan
and He �20�.

When the macroscopic velocity U0 is replaced by u*, the
moments a�,�r��

eq in Eqs. �25�–�29� are then

a0
eq = n , �48�

a1,�
eq = nau�

* , �49�

a2,��
eq = na2u�

*u�
* +

1

2
n����, �50�

a3,��	
eq = na3u�

*u�
*u	

* +
3

2
n�au	

*���, �51�

a4,��	�
eq = na4u�

*u�
*u	

*u�
* + 3n�a2u�

*u�
*�	� +

3

4
n�2����	�.

�52�

In the same manner, the velocity functions ��,�r�� �Co,i�,
Eqs. �12�–�16�, can be rewritten in terms of the lattice
vectors ei,

�0 = 1, �53�

�1,� = 2aei�, �54�

�2,�� = 2�a2ei�ei� −
1

2
��� , �55�

�3,��	 =
4

3
�a3ei�ei�ei	 −

a

2
�ei���	 + ei���	 + ei	����� ,

�56�

�4,��	� =
2

3
�a4ei�ei�ei	ei� −

a2

2
�ei�ei��	� + ei�ei	���

+ ei�ei���	 + ei�ei	��� + ei�ei���	 + ei	ei�����

+
1

4
��	�� . �57�

The D2Q13 and the next lattices are also able to run
second-order models. In these cases, the number of un-
knowns is greater than the number of disposable equations,
and several solutions will be available, satisfying the quadra-
ture problem.

Nevertheless, contrary to the results of McNamara and
Alder �10� and to the results that would be expected with
fitting methods �see Sec. IV�, this lattice is not able to run
full third-order models. Indeed, when N=3, it is impossible
to find real positive values for a, W0, W1, W2, W3 satisfying
all the norm restrictions, Eq. �39�, related to �3,��	. This
result is the same for the D2Q17 lattice.

Considering the D2Q21 lattice as a next candidate for
third-order models, there will be, in this case, seven un-
knowns a, W0, W1, W2, W3, W4, W5 for six norm restrictions,
after eliminating identical equations. Letting a be a free vari-
able, the system gives a solution with real positive roots
when a is inside the interval 0.659836�a�1.16208.

The values a=0.659836 and a=1.16208 �in fact,
a=1/12�5��193+25� are roots of the polynomials
W0�a� and W3�a�, respectively. In this manner, when the
value a=1.16208 is chosen, W3=0 and the lattice loses
an energy level, giving a modification of the D2Q17 lattice,
which has been named D2V17, shown in Fig. 3. The
weights, with six significant digits, are W0=0.402005,
W1=0.116155, W2=0.0330064, W3=0, W4=0.0000790786,
and W5=0.000258415.

This modified square lattice is less expensive considering
computer requirements and has the same properties when
compared with the D2Q21 lattice, i.e., it retrieves, exactly,
all the equilibrium moments up to the third order and gives
isotropic tensors up to the sixth rank. Therefore, the present
method can also be considered as a tool for investigating the
structure of minimal velocity sets giving regular lattices. The
D2V17 equilibrium distribution can be written as

FIG. 3. The D2V17 lattice.
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f i,3
eq = f i,2

eq + Wia3,��	
eq �3,��	�i�

= Win�1 + 2a2u�
*ei,� + 2�a2u�

*u�
*��a2ei,�ei,� −

1

2
���

+ ��a2ei
2 − 1� +

4

3
a3u�

*u�
*u	

*�a3ei,�ei,�ei,	

−
a

2
�ei,���	 + ei,���	 + ei,	�����

+ 2�a2�a2ei
2 − 2�u	

*ei,	� �58�

with fourth-order errors O��u*2 ,u*4�.
In addition to the equilibrium moments up to third order,

thermohydrodynamics requires the fourth-order equilibrium
moments �C0

2C0,x
2 	eq, �C0

2C0,y
2 	eq, and �C0

2C0,xC0,y	eq to be re-
trieved �10�. Since these functions are not orthogonal in the
continuous velocity space, a Gram-Schmidt orthogonaliza-
tion procedure was used to find orthogonal polynomials from
this set by using the previous Hermite polynomials and the
inner product Eq. �35�.

The result was

�4,1 = Co
2Co,x

2 −
7

2
Co,x

2 −
1

2
Co,y

2 + 1, �59�

�4,2 =
1

7
�Co

2�7Co,y
2 − Co,x

2 � − 24Co,y
2 + 6� , �60�

�4,3 = Co,xCo,y�Co
2 − 3� . �61�

When we require the norm preservation of the functions
�4,1, �4,2, and �4,3, this gives a system of eight independent
equations for nine unknowns. In this case, a is again a free
parameter and the solution gave real positive weights for
0.590193�a�0.760569.

Further, when a is, respectively, taken as 0.590193
or 0.760569, the weights W1 or W6 are null, giving
two D2V25 lattices that retrieve the correct thermohydrody-
namics equations. These lattices are shown in Fig. 4. For
the first lattice, called D2V25�W1�, a=0.590193 and
the calculated weights are W0=0.235184, W1=0,
W=0.101817, W3=5.92134�10−2, W4=2.00409�10−2,
W5=6.79523�10−3, W6=1.14376�10−3, and W7=2.19788
�10−3. Lattice D2V25�W6� has a=0.760569 and
W0=0.239059, W1=0.063158, W2=8.75957�10−2,

W3=3.11800�10−2, W4=6.19896�10−3, W5=2.02013
�10−3, W6=0, and W7=8.38224�10−5.

Therefore, thermohydrodynamic equations are correctly
retrieved with the LBE based on these lattices, but isotropy
of eighth-rank tensors cannot be assured. The equilibrium
distribution for this lattice can be written as

f i,th
eq = f i,3

eq + Wi�a4,1
eq �4,1�i� + a4,2

eq �4,2�i� + a4,3
eq �4,3�i�� ,

�62�

with, nevertheless, fourth-order errors O��u*2 ,u*4 ,�2� with
respect to the full MB distribution. Parameters a4,�

eq can be
found by using the orthogonality properties of �4,� �C0� in
the continuous space, giving,

a4,1
eq =

2

7
�2a4ux

*2u*2 + �a2�6ux
*2 + u*2� + 2�2� , �63�

a4,2
eq =

1

12
�7a4uy

*4 − a4ux
*4 + 6a4ux

*2uy
*2 + 24a2uy

*2� + 6�2� ,

�64�

a4,3
eq =

4

3
a2ux

*uy
*�3� + a2u*2� . �65�

For the full fourth-order model, the norm preservation of
a full set of Hermite orthogonal polynomials until the fourth
order is required, giving a set of nine norm restrictions. This
system will only be closed for a lattice with eight energy
levels. The D2Q29 lattice, with eight weights W0,. . ., W7, is
a natural candidate to be the minimal square lattice to run
fourth-order models in the square lattice hierarchy. For this
lattice, there are nine linearly independent equations. This
closed set of nine independent equations has, nevertheless,
no solution.

This result was the same for the next D2Q33 lattice, when
a is allowed to be a free parameter.

Since each function ��,�r�� is a linear combination of the
monomials �= �1,Cox ,Coy ,Cox

2 ,Coy
2 ,CoxCoy , . . . �, the norm

restrictions, Eq. �39�, can be indifferently used on the set �
of orthogonal functions or on set � of monomials. The last
choice is, in the present case, preferable for identifying a
symmetry deficiency in the DQ-series hierarchy of square
lattices �Fig. 2�. Indeed, consider the fourth-order functions
�4,1=Coy

2 Cox
2 and �4,2=Cox

3 Coy. These functions have
different norms in the continuous space, respectively,
3 /4 and �15/16. Nevertheless, since �4,1= �CoyCox�2 and
�4,2= �CoxCoy�Cox

2 , the only contributions for their norms in
the discrete space came from the diagonal vectors and are the
same because along these directions �Co,iy�= �Co,ix�.

This is an important result, since it means that the
Q-series of square lattices are unable to run full fourth-order
LBE models.

In this way, we have tried another building structure
for the lattices, filling completely the available Cartesian
space around each site following the sequence
�ei�=0,1 ,�2,2 ,�5,2�2,3 ,�10 with sequentially increasing
values for �ei�.

FIG. 4. The D2V25 lattices.
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Figure 5 shows a D2V37 lattice, constructed in such a
manner, with 37 velocity vectors but eight weights Wi.
Solution of the nine norm equations is unique and gives,
when six significant digits are considered, a=0.846393, W0
=0.233151, W1=0.107306, W2=0.0576679, W3=0.0142082,
W4=0.00535305, W5=0.00101194, W6=0.000245301, and
W7=0.000283414. This lattice came from the solution of a
closed system with nine linearly independent norm restric-
tion for nine unknowns.

Since, in the D2V37 lattice, all the fourth-order Hermite
polynomial tensors belong to the orthogonal basis of this
lattice, the equilibrium distribution can be written as

f i,4
eq = f i,3

eq + Wia4,��	�
eq �4,��	��i�

= Win�1 + 2a2u�
*ei,� + 2�a2u�

*u�
*��a2ei,�ei,� −

1

2
���

+ ��a2ei
2 − 1� +

4

3
a3u�

*u�
*u	

*�a3ei,�ei,�ei,	

−
a

2
�ei,���	 + ei,���	 + ei,	����� + 2�a2�a2ei

2 − 2�u	
*ei,	

+
2

3
��a8�u�

*ei��4 − 3a6u*2�u�
*ei��2 +

3

4
a4u*4�

+ ��3a6�u�
*ei��2ei

2 −
3

2
a4�D�u�

*ei��2 + 4�u�
*ei��2

+ u*2ei
2� +

3

4
a2u*2�D + 2��

+
3

4
�2�a4ei

4 −
1

2
a2�D + 2�ei

2 +
1

4
D�D + 2���� . �66�

The D2V37 lattice, with the above equilibrium distribu-
tion, can be considered as the minimal square lattice giving a
fourth-order approximation to the continuous Boltzmann
equation, wih errors O��2u* ,u*5�.

The weights Wi, in general, decrease with i and attain
very small values when i is large. The smallness of Wi for
large i is expected and is a consequence of �a� the restriction
that was imposed on the lattice to be space filling, requiring
the norm of each added lattice vector, ei to be, frequently, an
integer multiple of the norm of the lattice vectors forming
the D2Q9 lattice unitary cell in square lattices, and �b� the

required degree of approximation leading to polynomials
with terms of O �eb

N�.

V. DISCUSSION: A DISCRETIZATION APPROACH BASED
ON A FINITE SET OF ORTHOGONAL FUNCTIONS

IN THE DISCRETE SPACE

Consider a previously assigned velocity set
�= �c0 , . . . ,cb� giving a regular lattice. Returning to Eq. �1�,

���	eq =
 feq�c�
nd

���c�dc = �
i

f i
eq

n
���ci� �67�

for �=0,1 ,2 , . . . ,b, but now �� forms a set of b+1 linearly
independent velocity monomials in a given lattice with
b+1 degrees of freedom. Considering, e.g., the D2Q9 lattice,
this set can be chosen as

� = �1,cix,ciy,cix
2 ,ciy

2 ,cixciy,cix
2 ciy,ciy

2 cix,ci
4� , �68�

since, in this lattice, there are only two third-degree linearly
independent monomials and a fourth-degree additional mo-
nomial is required.

The orthogonal functions ��,�r���ci� are now considered to
be derived from the set ��. This can be accomplished by
using an orthogonalization procedure, such as the Gram-
Schmidt process, and is the basis of the LB moments method
�13�. Since the particular forms of ��,�r���ci� are dependent
on the lattice, on functions ��, and on the manner in which
the Gram-Schmidt method is used, these functions will be
noted as ��,�r��

� �ci� to distinguish them from the above Her-

mite polynomial tensors.
In this case, an inner product must be defined in the dis-

crete space generated by the functions f : �c0 , . . . ,cb�→R.
Considering

�a � b�d = �
i

aibi �69�

to be such a product each element of the orthogonal basis can
be written in terms of the monomials �� as

��,�r��
� = �

�=0

�

a�,�s��
�,� ��, �70�

where a�,�s��
�,� are real numbers, dependent on the assigned

lattice. After multiplying Eq. �67� by a�,�s��
�,� for each � and

adding the resulting equations, we obtain


 feq�c�
nd

��,�r��
� �c�dc = �

i

f i
eq

n
��,�r��

� �ci� . �71�

Expanding f i
eq/n in terms of functions ��,�r��

� �ci�,

f i
eq

n
= �

�=0

b

a�,�r��
eq,� ��,�r��

� �ci� . �72�

Since ��,�r��
� �ci� are orthogonal �in the discrete space�, the

following relationship follows directly from Eq. �71�:

FIG. 5. The D2V37 lattice.

FROM THE CONTINUOUS TO THE LATTICE¼ PHYSICAL REVIEW E 73, 056702 �2006�

056702-9




 feq�c�
nd

��,�r��
� �c�dc = a�,�r��

eq,� ��, �73�

where

�� = �
i

���,�r��
� �2, �74�

resulting in

a�,�r��
eq,� =


 feq�c�
nd

��,�r��
� �c�dc

�
i

���,�r��
� �2

. �75�

The above equation gives the equilibrium moment a�,�r��
eq,�

in terms of the MB distribution function for a given order �
of the function ��,�r��

� .

In this manner, Eq. �71� can be regarded as a discretiza-
tion equation giving the unknowns f i

eq in terms of the MB
distribution function, requiring the moments a�,�r��

eq,� to be the

projections of the full MB distribution, feq�c�, on a �not or-
thogonal� basis ��,�r��

� �c� of HN, Eq. �75�.
The discrete velocities ci can be related to the dimension-

less lattice vectors ei through

ci =
h

�
ei, �76�

where h and � are, respectively, the space and time scales.
The next step is now to find the polynomial approxima-

tion, fN
eq�c�, to the full MB equilibrium distribution that is

generated by functions ��,�r��
� �c� of HN and see what is the

relationship between fN
eq�ci� and the above derived f i

eq.
It is important to emphasize that although functions ��,�r��

�

are orthogonal in the subspace HN of H, generated by ��,�r��
�

with respect to the inner product, Eq. �69�, these functions
are, in general, not orthogonal in this subspace, with respect
to the inner product of H, Eq. �17�. Thus, consider replacing
feq�c� on the left-hand side of Eq. �73� by the projection
fN

eq�c� of the MB distribution on the subspace spanned by
functions ��,�r��

� �c�.
Written in terms of ��,�s��

� , this projection will have a

form analogous to Eq. �18�,

fN
eq = nd

e−C2

�D/2� m

2kT
D/2

�
�=0

N

a�,�s��
eq,� ��,�s��

� �C� . �77�

Since functions ��,�s��
� are not orthogonal with respect to

Eq. �17�, Eq. �73� gives

�
�

a�,�s��
eq,� 1

�D/2 
 e−C2
��,�s��

� ��,�r��
� dC = a�,�r��

eq,� ��, �78�

which is a closed system of equations for the unknows
a�,�s��

eq,� . When a�,�r��
eq,� on the right-hand side of the above equa-

tion is considered to be either given by Eq. �75� or to be
unknown, this system can only be expected to have the same
solution, Eq. �75�, when functions ��,�s��

� are orthogonal

with respect to the inner product Eq. �17� and

1

�D/2 
 e−C2
��,�s��

� ��,�r��
� dC = �

i

��,�s��
� �Ci���,�r��

� �Ci� ,

�79�

which is not generally true.
This means that, analogous to the previous approach dis-

cussed in the beginning of Sec. I, fN
eq�c� has no identification

with f i
eq and does not converge to f i

eq �or to a weighted f i
eq�

when c approaches the poles ci.
In this manner, although the above exposed discretization

procedure leads to the correct macroscopic equilibrium mo-
ments and, as a consequence, to the correct hydrodynamic
equations, the generated discrete equilibrium distribution
loses any local identification with its continuous counterpart.

LBM is a kinetic method based on the solution of a dis-
crete kinetic equation �and not on the solution of the hydro-
dynamic equations themselves�, and the next question to be
answered is, to what extent does this lack of identification
affect the solution of a given hydrodynamic problem?

VI. CONCLUSION

The present paper deals with the discretization problem in
generating the lattice Boltzmann equation from the continu-
ous Boltzmann equation.

In the quadrature problem, lattices with temperature-
dependent particle velocities were avoided by letting the par-
ticle velocity, c2, be free from the temperature T in the ex-
ponential part e−C2

of the MB distribution and writing the
equilibrium distribution as a Taylor expansion in terms of the
temperature deviation �.

It was shown that the LBE can be derived from the con-
tinuous Boltzmann equation when the orthogonality of the
Hermite polynomial tensors in the continuous space is main-
tained. It was also shown that this can be assured when the
norms of these tensors are preserved in discrete space, lead-
ing to increasingly accurate lattice Boltzmann models.

In this manner, the preservation of the functional structure
of the Hilbert space, HN, when its inner product and induced
norm are replaced by discrete sums, appears to be a funda-
mental rule for the velocity discretization problem when the
discrete equilibrium distribution is required to give increas-
ingly accurate approximations with respect to the continuous
MB distribution. Although equilibrium moments are pre-
served, this rule is not, in general, satisfied by the lattices,
which structure is derived from a finite polynomial expan-
sion in the discrete space.

These restrictions lead to space-filling lattices with in-
creased dimensionality when compared with presently
known square lattices. In this manner, it was concluded that
a 17-velocities lattice is required for third order and a 25-
velocities lattice is needed for thermal model approxima-
tions, compared with, respectively, the D2Q13 and D2Q17
lattices, which are shown to retrieve the correct macroscopic
equations related to these moments. In particular, considering
thermal problems, the D2Q17 lattice, which equilibrium dis-
tributions f i

eq are obtained with the method exposed in Sec.
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IV, retrieves the thermohydrodynamic equations, but its equi-
librium distribution and the derived lattice Boltzmann equa-
tion cannot be considered as reliable approximations to the
MB distribution and the Boltzmann equation, respectively.
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APPENDIX A: ORTHOGONALITY OF THE HERMITE
POLYNOMIAL TENSORS IN THE DISCRETE

SPACE

Let ��,�r�� be a set of Hermite polynomial tensors, or-
thogonal with respect to the inner product Eq. �35�. Consider
a Bravais lattice, where to each velocity vector C0,i, C0,i
�0, corresponds a discrete velocity C0,−i=−C0,i.

Let m����,�r��� be a parity index giving the number of
times the index � appears in ��,�r��. Table I gives the parity
indexes of some leading Hermite polynomial tensors in two
dimensions.

Index m����,�r��� gives the parity of ��,�r�� with respect to
the � component of the particle velocity C0. In this manner,
the Hermite polynomials ��,�r�� can be also written as a
three-index function ��,mx�,my�

. This last notation is more
convenient for the present purpose.

When making the inner product in either its continuous,
Eq. �35�, and discrete, Eq. �36�, forms,

���,mx�,my�
* ��,mx�,my�

�c or d�,

this product is trivially null whenever

mx���,mx�,my�
��,mx�,my�

� = mx� + mx�

or

my���,mx�,my�
��,mx�,my�

� = my� + my�

are odd.

When both parity indexes mx���,mx�,my�
��,mx�,my�

� and
my���,mx�,my�

��,mx�,my�
� are even, the resulting polynomial is

invariant under changes C0x→−C0x and C0y→−C0y, there-
fore it has only quadratic forms in the monomials 1, C0x, C0y,
C0x

2 , C0y
2 , C0xC0y , . . .. When both parity indexes

mx���,mx�,my�
��,mx�,my�

� and my���,mx�,my�
��,mx�,my�

� are
even, the resulting polynomial is invariant under changes
C0x→−C0x and C0y→−C0y, therefore it has only quadratic
forms in the monomials

C = �C�,mx�,my�
= 1,C0x,C0y,C0x

2 ,C0y
2 ,C0xC0y, . . . �

. The squared monomials can be written as linear combina-
tions of �i,j,k

2 . This comes from the consideration that each
square ��,mx�,my�

2 depends on a leading term related to
C�,mx�,my�

2 and on lower-order degree monomials. In this man-
ner, letting �2 and C2 be vectors,

�2 = ��0
2,�1,1,0

2 , . . . ,��,mx�,my�

2 �

and

C2 = �C0
2,C1,1,0

2 , . . . ,C�,mx�,my�

2 � ,

respectively, the linear system of equations

�2 = AC2 �A1�

can be easily inverted since A is a triangular matrix, with
non-null terms in the diagonal. Consequently, the products
will be

��,mx�,my�
��,mx�,my�

= �
i=0

��+��/2

�
j=0

i

ai,j,i−j�i,j,i−j
2 , �A2�

where the parameters ai,j,i−j are constants.
As a consequence, when ���,mx�,my�

*��,mx�,my�
�d is not

trivially null, i.e., when mx���,mx�,my�
��,mx�,my�

� and
my���,mx�,my�

��,mx�,my�
� are even, this inner product will be

given by

���,mx�,my�
� ��,mx�,my�

�d

= �
i=0

��+��/2

�
j=0

i

ai,j,i−j��i,j,i−j�d
2 = �

i=0

��+��/2

�
j=0

i

ai,j,i−j��i,j,i−j�c
2

= ���,mx�,my�
� ��,mx�,my�

�c �A3�

because �i� the norms of functions �� are preserved and �ii�
Eq. �A2� is true in both continuous and discrete space.

In this manner, since functions �� are orthogonal in con-
tinuous space, they will also be orthogonal in discrete space
with respect to the inner product, Eq. �36�.

This result can be easily generalized for three-
dimensional lattices.

APPENDIX B

Considering the D2Q9 lattice, the norm and orthogonality
restrictions give for the functions

��0,�1,x,�1,y,�2,xx,�2,yy,�2,xy� �B1�

the following system of equations:

TABLE I. Parity indexes of some leading Hermite polynomial
tensors.

��,�r�� mx my

�0 0 0

�1,x 1 0

�1,y 0 1

�2,xx 2 0

�2,yy 0 2

�2,xy 1 1

�3,xxx 3 0

�3,xyy 1 2

�3,yyy 0 3
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1

��
−�

�

e−C0y
2 �


−�

�

e−C0x
2

1dC0xdC0y� = 1 = W0 + 4W1 + 4W2,

1

��
−�

�

e−C0y
2 �


−�

�

e−C0x
2

�2C0x�2dC0xdC0y�
= 2 = 8a2W1 + 16a2W2,

1

�
�


−�

�

e−C0y
2 �


−�

�

e−C0x
2 �2�C0x

2 −
1

2
�2

dC0x�dC0y�
= 2 = W0 + 4W2�2a2 − 1�2 + W1�2�2a2 − 1�2 + 2� ,

1

��
−�

�

e−C0y
2 �


−�

�

e−C0x
2

�2C0xC0y�2dC0xdC0y�
= 1 = 16a4W2,

1

��
−�

�

e−C0y
2 �


−�

�

e−C0x
2

1 � 2�C0x
2 −

1

2
dC0x�dC0y�

= 0 = W1�4a2 − 4� − W0 + W2�8a2 − 4� ,

1

��
−�

�

e−C0y
2 �


−�

�

e−C0x
2

2�C0x
2 −

1

2


�2�C0y
2 −

1

2
dC0x�dC0y� = 0

= W0 + W1�4 − 8a2� + 4W2�2a2 − 1�2,

where identical equations and the inner products giving odd
velocity functions were previously excluded.

There are only four independent equations. The solution
of the above system gives the classically known values a
=�3/2, W0=16/36, W1=4/36, and W2=1/36, which are
also the solutions when only the first four equations, related
to the norm restrictions, are considered. In this manner, the
two linearly independent orthogonality conditions are satis-
fied by the solution of the norm equations. This outcome was
the same for all the lattice that have been analyzed in this
work, and Appendix A shows that this result is, in fact, a
consequence of general properties of Hermite polynomials
and of the Bravais lattices structure.
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